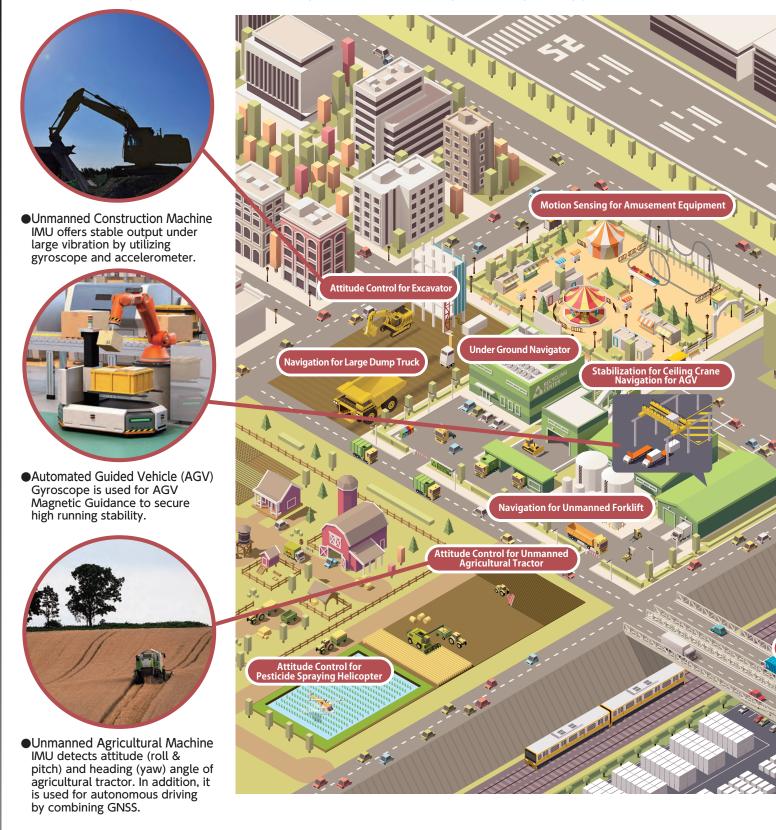
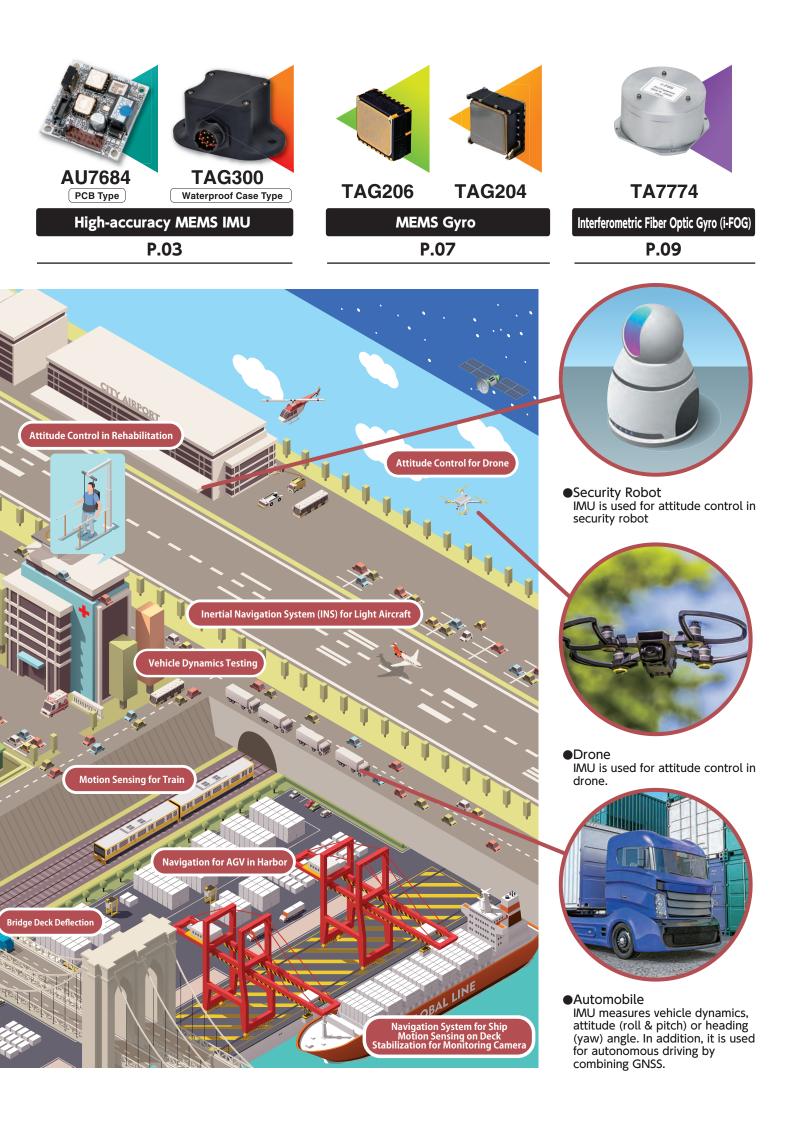


MEMS IMU


3-axis Inertial Measurement Unit (6DoF sensors)

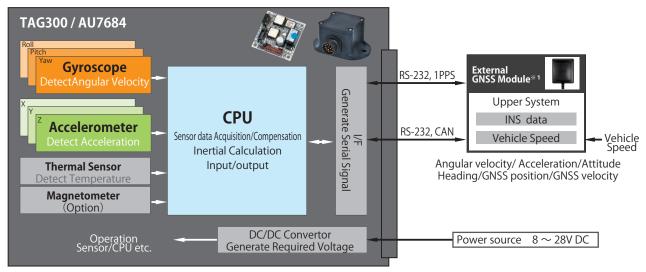


TAMAGAWA SEIKI CO., LTD.

MEMS IMU i-FOG

Inertial Measurement Unit (IMU) is an electronic device that measures various kinds of motions in vehicle dynamics, attitude (roll & pitch) or heading (yaw) angle. In addition, it is an essential technology in autonomous driving for localization and dead-reckoning. Tamagawa Seiki Co., Ltd. offers wide range of product, such as MEMS Gyro, FOG or AHRS. We provide the best option for your application.

MEMS INU AU7684 TAG300

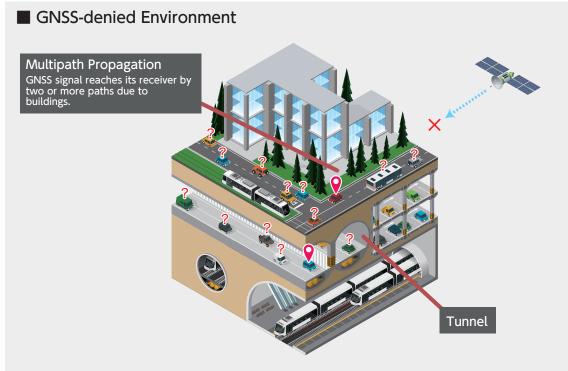


Inertial Measurement Unit (IMU) incorporates high-accuracy MEMS gyroscope. Both accuracy and cost are improved compared to conventional equipment. In addition to an external GNSS type, on-board Extended Kalman Filter based Dead Reckoning type is newly released.

► FEATURES

MEMS IMU functional block diagram

Note)

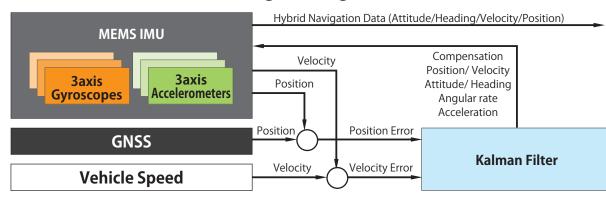

External GNSS Module including cable and antenna is not attached to the product. If required, GNSS module should be prepared by customer.

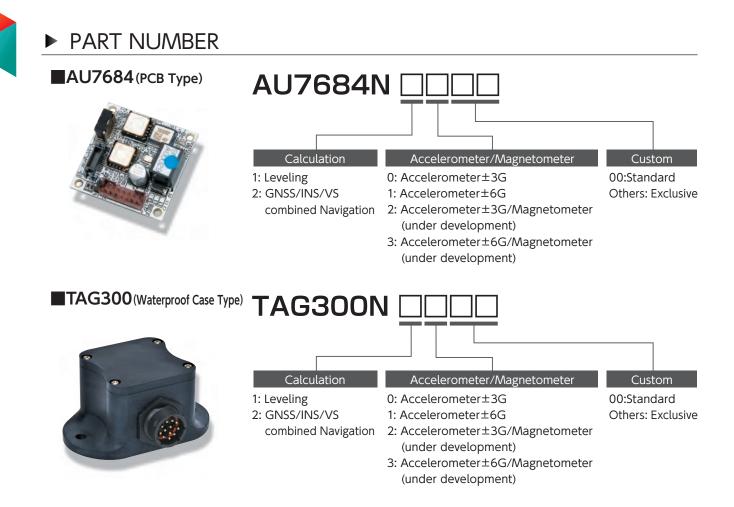
Connectable GNSS Module: KGM-810GRB1_PS_917/Position

Regarding the inquiries or purchases, please contact to our sales representative.

Extended Kalman Filter + GNSS Dead reckoning type

On-board Kalman Filter integrates measurements from 3-axis gyroscopes, accelerometers and GNSS to run a high-level estimation for dead-reckoning, localization and attitude detection.


GNSS/INS/VS combined Navigation


IMU performs Dead Reckoning which is the process of calculating one's current position for a certain period time even in GNSS denied environment by using GNSS, Vehicle Speed and Kalman Filter that estimates gyro & acceleration error.

NEW

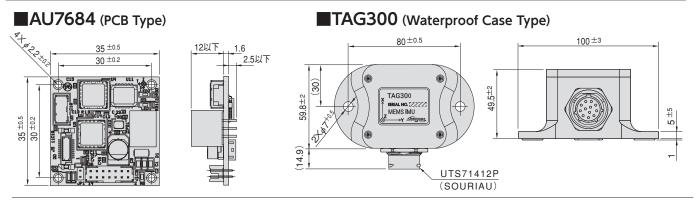
GNSS/INS/VS combined Navigation Algorism

▶ PERFORMANCE

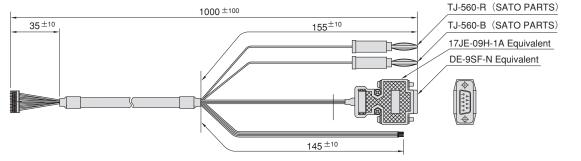
Item	Specification	Remark	
Dimension (PCB Type)	35 imes 35 imes 16.1 mm	P/N: AU7684	
Dimension (Waterproof Case Type)	100 × 59.8 × 49.5mm (IP65)	P/N: TAG300	
Power supply voltage	$8V \sim 28V$ DC		
Interface/ Baud rate	RS-232: 115.2kbps CAN: 500kbps (Initial setting)	User can change CAN baud rate	
Output Cycle	RS232C:200Hz, CAN:1000Hz		
Gyro Range	± 200deg/sec		
Gyro Bias	0.2° /sec rms	Room temp.	
	± 0.2° /sec	Ambient temp.	
Gyro Scale Factor Error	0.2% Full Scale rms		
Acceleration Range	\pm 3G or \pm 6G	Factory setting	
Acceleration Bias	0.0196m/sec ² rms (2mG)	Room temp.	
	0.049m/sec ² rms (5mG)	Ambient temp.	
Acceleration Scale Factor Error	0.2% Full Scale rms		
Static Accuracy (Roll & Pitch)	0.1deg rms (Range 3G)	Room temp.	
	0.2deg rms (Range 3G)	Ambient temp	
In-run Drift (Yaw)	0.01deg/s rms	Offset-cancel applied	
Operation temp. range	− 40°C ~+ 85°C		
Vibration	29.4m/s ² rms (5Hz \sim 2kHz) (3G rms)	Random vibration	
Shock	20G 10ms		

► FUNCTION

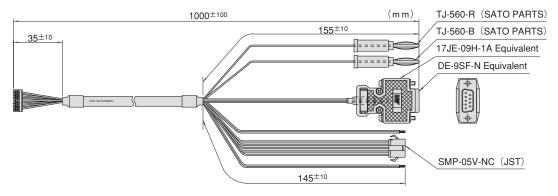
Item	Remark
Waterproof Case	IP65: TAG300
Magnetometer	Under development
Vehicle Speed (VS) Input I/F	RS232C/CAN/Pulse
Power Protection Circuit	
GNSS Input I/F	Recommendation/ Customization
CAN cable termination process	


USER CONFIGURABLE COMMANDS

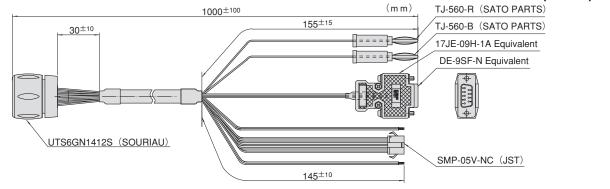
Function	Explanation		
Alignment Compensation	If mounting surface is tilting, its attitude angle can be recognized as a zero (horizontal) $% \left({\frac{1}{2}} \right)$.		
Definition of Axis	You can select not only Z axis but also X and Y axis as vertical axis		
Update Cycle & Output Cycle	The calculation update cycle & output cycle can be changed.		
CAN Format, CAN ID allocation	CAN format (standard/extended) and CAN ID allocationcan be changed.		


There are a lot of other commands except for the above-mentioned. The customercan change variours settings.

Please refer to the specification for the details.


► OUTLINE DRAWING

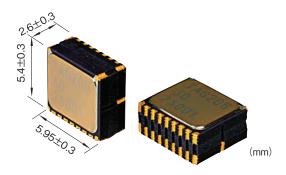
AU7684 Interface Cable EU8937N1000 (sold separately)

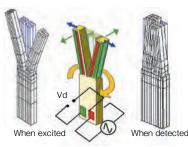


AU7684 Interface Cable with GNSS connector EU8937N1001 (sold separately)

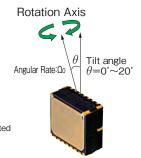
TAG300 Interface Cable EU8940N1000 (sold separately)

TAG300 Interface Cable with GNSS connector EU8940N1001 (sold separately)


MEMS Gyro Sensor TAG206N5000 TAG204N5000


When an oscillating object is rotated, Coriolis Force works in the direction perpendicular to the vibration, and the other vibration occurs.

This induced vibration is detected and converted into voltage proportional to the amplitude of the vibration.


Widespread MEMS Gyro TAG206N5000

DETECTION

CoriolisForce : Fo=2mvΩo Mass : m Velocity : v

Inclined to the direction of Pin 1

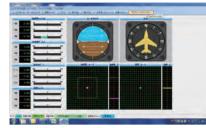
ELECTRICAL SPECIFICATION

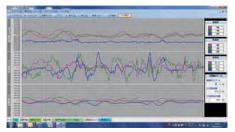
ltomo	Digital Output				Analog Output				
Items MI	MIN	TYP	MAX	Unit	MIN	TYP	Unit	Unit	Remark
Supply Voltage	$5V \pm 5\%$		V	5V ± 5%			V		
Consumption Current	9mA Max.		mA	9mA Max.			mA		
Measurement Range	± 60deg/sec		deg/sec	\pm 60deg/sec			deg/sec		
Sampling Rate	1000Hz		Hz	-			-		
Maximum Output		16383d		-	3.9			V	
Minimum Output		0d		-			0.3	V	
Zero Rate Output	-12		+12	deg/sec	-12		+12	deg/sec	Ta=-40 ~ +85°C Digital Output : 8192d is a standard Analog Output : 2.1V is a standard
Zero Rate Output with emperature variance	-3		+3	deg/sec	-3		+3	deg/sec	Ta=-40 ∼ +85℃
Scale Factor	74	82	90	LSB/deg/sec	16.2	18	19.8	mV/deg/sec	Ta=-40 ∼ +85°C
Linearity	-0.5		+0.5	%FS	-0.5		+0.5	%FS	
Scale Factor Variation with Temperature	-2		+2	%	-2		+2	%	
Temperature Output	8102d	8192d	8282d		2.08	2.1	2.12	V	25°C
Scale Factor of Temperature Sensor	-16	-18	-20	LSB/°C	-3.8	-4	-4.2	mV/°C	Ta=-40 ∼ +85°C

High Accuracy MEMS Gyro TAG204N5000

► ELECTRICAL SPECIFICATION

		Digita	l Output		
Items	MIN	TYP	MAX	Unit	Remark
Supply Voltage	5V ± 5%			V	
Consumption Current	9mA Max.			mA	
Measurement Range	\pm 60deg/sec			deg/sec	
Sampling Rate	1000Hz			Hz	
Maximum Output		16383d		-	
Minimum Output		0d		-	
Zero Rate Output	-6		+6	deg/sec	Ta=-40 \sim +85 °C Digital Output : 8192d is a standard
Zero Rate Output with temperature variance	-2		+2	deg/sec	Ta=-40 ∼ +85°C
Scale Factor	74	82	90	LSB/deg/sec	Ta=-40 ∼ +85°C
Linearity	-0.5		+0.5	%FS	
Scale Factor Variation with Temperature	-2		+2	%	
Temperature Output	8102d	8192d	8282d		25℃
Scale Factor of Temperature Sensor	-16	-18	-20	LSB/°C	Ta=-40 ∼ +85°C


IMU Simulator software


In dedicated software is able to graph monitor and data outputs of the IMU's output. *There are two types of software with GNSS or without GNSS. Please check at the time of your order.

Software can be downloaded free from our HP.

<MEMS IMU HP> http://mems.tamagawa-seiki.com/en/download/

Simulator software

2D monitor

Graph monitor

Graph monitor → Data output

Interferometric Fiber Optic Gyro (i-FOG)

TA7774N4

High accuracy [0.1°/h] Gyro, which is a key technology to realize fully autonomous driving.

٦Ť

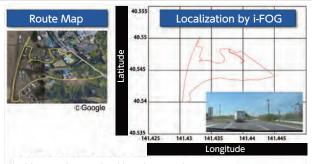
П

► FEATURES

High-accuracy

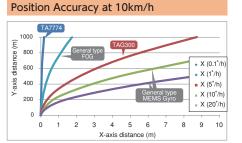
Achieved [0.1° /h] which is required for fully autonomous driving.

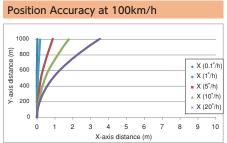
Low-price


Our unique technology for winding and Fiber Optical IC realizes cost reduction.

03 🕨 Closed-loop Type

The accuracy of localization of vehicles is increased to centimeter class by using i-FOG. It is necessary to maintain the accuracy of localization at centimeter class under GNSS-denied environment.

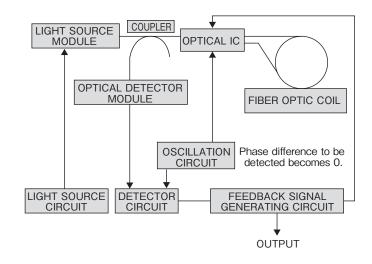

i-FOG Promotional Video See the demonstration of i-FOG localization.


http://mems.tamagawa-seiki.com/en/movie/

Red line is the track of localization by i-FOG

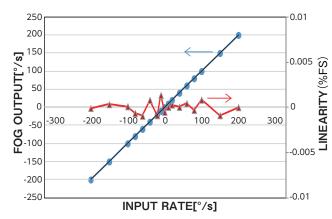
POSITION ACCURACY BY GYRO ERROR & VEHICLE SPEED

The accuracy of FOG (TA7774) is 0.1 ° /h which is possible to keep the accuracy of localization for a certain period of time. The accuracy of MEMS IMU (AU7684/TAG300) is better than standard class MEMS gyro. Therefore, customers can select the best type according to the requirement of accuracy.



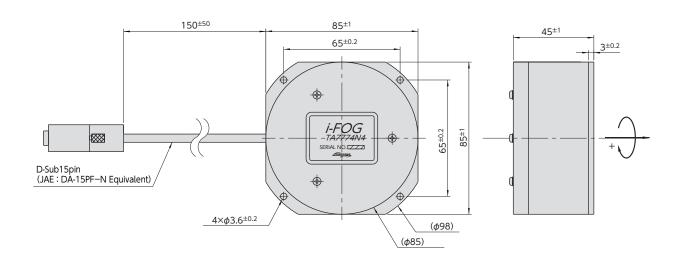
Part Number	AU7684/TAG300	TA7774	
Built-in Gyroscope	MEMS Gyro \times 3	FOG × 1	
Accuracy	Good	Very Good	
Cost	Very Good	Good	
Size (3-axis of sensor)	Very Good	Good	
Features	 Accuracy [5° /h] Suitable for short-term measurement for fast-moving machine Waterproof Case (TAG300 Series) 	 High Accuracy [0.1° /h] Suitable for long-term measurement for slow-moving machine 	
Target Application	Construction machine, Agricultural machine	Automobile, Drone	

► SPECIFICATION


Part Number	TA7774N4		
Dynamic Range	±200° /sec		
Bias Repeatability	<0.1° /h (1 σ) (at 25°C static)		
Bias Instability	<0.1° /h		
Random Walk	<0.01° /h		
Scale Factor Accuracy	±100ppm		
Scale Factor Linearity	± 100ppm FS		
Mass	<400g		
Power-supply voltage	±5V, ±15V		
Dower Consumption	±5V: <1.5A at startup		
Power Consumption	±15V:<0.2A		
Operating Temprature	_20~+60℃		
Non-operating Temperature	-30~+70°C		

CONFIGURATION

ALLAN VARIANCE Random walk : $0.01^{\circ}/\sqrt{h}$


► SCALE FACTOR & LINEARITY

%For more details, contact to our technical support written in the last page.

OUTLINE DRAWING

Unit : mm

i-FOG + MEMS IMU

Combination of i-FOG (Yaw) & MEMS GYRO $\times 2$ (Roll & Pitch) is now under development. Please contact to us for the details.

WARRANTY

When ordering, please contact our Sales Department as the contents of this catalog are subject to change without notice.

The outline of operation and the examples of an application circuit indicated in this catalog are only showing standard operation and usage of electronic components and do not guarantee the operation by actually used equipment. Therefore, please design equipment at your own risk in case you use our products. We cannot take responsibility for damages resulting from the use of our products.

The technical information containing the outline of operation and circuit diagram indicated in this catalog does not mean consent of intellectual property rights, such as patent right of our company or a third party, and copy right. Moreover, it does not guarantee that enforcement of a third party's intellectual property rights or other rights can be performed. Therefore, we do not take responsibility for the infringement of a third party' s intellectual property rights or other rights resulting from the use of our technical information.

Products shown in this catalog are designed and manufactured with an object for general use, such as the ordinary industrial use, general office work, and personal/home use. They are not designed and manufactured for the use which requires high reliability (under-water stations and space satellites) , and the use which requires high safety and if the safety is not secured, it has serious influence socially and directly onto life and body (nuclear reaction control in nuclear facilities, airplane automatic flight control, air traffic control, traffic control in a mass transportation system, medical equipment for life maintenance, and missile launch control in an arms system). Therefore those who are considering use of our products in these fields are advised to consult

our Sales Department in advance. We cannot take responsibility for damages resulting from the failure in the consultation. Failure of electronic components occurs in a certain probability. So we request

you to establish safety designs, such as a redundant design of equipment, a design to prevent spread of a fire, an over-current prevention design, and a malfunction prevention design, even if the electronic components should break down so that an accident resulting in injury or death, a fire accident, and social damage may not take place.

In case our product in this catalog corresponds to a cargo or technology regulated based on "a foreign exchange and a foreign trade law", the permission based on the law is required in exporting the product.

TAMAGAWA TRADING CO., LTD. A COMPANY OF TAMAGAWA SEIKI CO., LTD.

A COMPANY OF TAMAGAWA SEIKI CO., LTL

International Marketing Sales Department

Head quarters: 1-3-1 Haba-cho, Iida, Nagano Pref. 395-0063 Japan PHONE : +81-265-56-5423 FAX : +81-265-56-5427

Motortronics[®] Ideas make technology fun – http://mems.tamagawa-seiki.com/en/

